If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81y^2-9y-1=0
a = 81; b = -9; c = -1;
Δ = b2-4ac
Δ = -92-4·81·(-1)
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9\sqrt{5}}{2*81}=\frac{9-9\sqrt{5}}{162} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9\sqrt{5}}{2*81}=\frac{9+9\sqrt{5}}{162} $
| 1/4(x+8)=7 | | -14=7+4v+7 | | (3/11)b+5=5 | | (x+2)=-4 | | -4(2z+6)=16 | | 3n-8+5n=-16 | | 3x=20-6x | | 6x+7+5x+6=10 | | 4+-5=4x+7 | | 4(3x-7)=3x-7 | | 5(3-a)-10=15 | | 17(y-2)=17y+64 | | 6=11w-8w | | 477=1/2(6x-19)*18 | | 1.9t=0.5(4-t)-0.8 | | 2/5m+3/5m=2 | | 3(n-6)-(2-5n)=7n | | 6x+8=6x-9 | | 3=b/6 | | 25y^2=20y+1 | | 16d+-13d+-3=6 | | 14.7×5f=7070 | | 3/4x-8=-10-(-11) | | 14.7•5f=7070 | | 5(2x-1)+x+17=5x+6(x+) | | 6x-19=-21 | | 8/x+1−5/2=4/3x+3. | | x/6=4/x-5/3 | | 5t^2-32t+32=0 | | -7q+2=10 | | 81/3=1/3(9h12) | | 20-6+4k=-2-2k |